This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For sets, the A and B cosets by R binary relation and the B and A cosets by R binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcosscnvcoss | |- ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> B ,~ R A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | |- ( E. u ( u R A /\ u R B ) <-> E. u ( u R B /\ u R A ) ) |
|
| 2 | 1 | a1i | |- ( ( A e. V /\ B e. W ) -> ( E. u ( u R A /\ u R B ) <-> E. u ( u R B /\ u R A ) ) ) |
| 3 | brcoss | |- ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> E. u ( u R A /\ u R B ) ) ) |
|
| 4 | brcoss | |- ( ( B e. W /\ A e. V ) -> ( B ,~ R A <-> E. u ( u R B /\ u R A ) ) ) |
|
| 5 | 4 | ancoms | |- ( ( A e. V /\ B e. W ) -> ( B ,~ R A <-> E. u ( u R B /\ u R A ) ) ) |
| 6 | 2 3 5 | 3bitr4d | |- ( ( A e. V /\ B e. W ) -> ( A ,~ R B <-> B ,~ R A ) ) |