This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the category Cat, which consists of all categories in the universe u (i.e., " u -small categories", see Definition 3.44. of Adamek p. 39), with functors as the morphisms ( catchom , elcatchom ). Definition 3.47 of Adamek p. 40. We do not introduce a specific definition for " u -large categories", which can be expressed as ( Cat \ u ) . (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-catc | |- CatCat = ( u e. _V |-> [_ ( u i^i Cat ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccatc | |- CatCat |
|
| 1 | vu | |- u |
|
| 2 | cvv | |- _V |
|
| 3 | 1 | cv | |- u |
| 4 | ccat | |- Cat |
|
| 5 | 3 4 | cin | |- ( u i^i Cat ) |
| 6 | vb | |- b |
|
| 7 | cbs | |- Base |
|
| 8 | cnx | |- ndx |
|
| 9 | 8 7 | cfv | |- ( Base ` ndx ) |
| 10 | 6 | cv | |- b |
| 11 | 9 10 | cop | |- <. ( Base ` ndx ) , b >. |
| 12 | chom | |- Hom |
|
| 13 | 8 12 | cfv | |- ( Hom ` ndx ) |
| 14 | vx | |- x |
|
| 15 | vy | |- y |
|
| 16 | 14 | cv | |- x |
| 17 | cfunc | |- Func |
|
| 18 | 15 | cv | |- y |
| 19 | 16 18 17 | co | |- ( x Func y ) |
| 20 | 14 15 10 10 19 | cmpo | |- ( x e. b , y e. b |-> ( x Func y ) ) |
| 21 | 13 20 | cop | |- <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. |
| 22 | cco | |- comp |
|
| 23 | 8 22 | cfv | |- ( comp ` ndx ) |
| 24 | vv | |- v |
|
| 25 | 10 10 | cxp | |- ( b X. b ) |
| 26 | vz | |- z |
|
| 27 | vg | |- g |
|
| 28 | c2nd | |- 2nd |
|
| 29 | 24 | cv | |- v |
| 30 | 29 28 | cfv | |- ( 2nd ` v ) |
| 31 | 26 | cv | |- z |
| 32 | 30 31 17 | co | |- ( ( 2nd ` v ) Func z ) |
| 33 | vf | |- f |
|
| 34 | 29 17 | cfv | |- ( Func ` v ) |
| 35 | 27 | cv | |- g |
| 36 | ccofu | |- o.func |
|
| 37 | 33 | cv | |- f |
| 38 | 35 37 36 | co | |- ( g o.func f ) |
| 39 | 27 33 32 34 38 | cmpo | |- ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) |
| 40 | 24 26 25 10 39 | cmpo | |- ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) |
| 41 | 23 40 | cop | |- <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. |
| 42 | 11 21 41 | ctp | |- { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } |
| 43 | 6 5 42 | csb | |- [_ ( u i^i Cat ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } |
| 44 | 1 2 43 | cmpt | |- ( u e. _V |-> [_ ( u i^i Cat ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) |
| 45 | 0 44 | wceq | |- CatCat = ( u e. _V |-> [_ ( u i^i Cat ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) |