This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg .) (Contributed by NM, 7-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom usage. (Revised by GG, 12-Oct-2024) (Proof shortened by Wolf Lammen, 11-May-2025) (Proof shortened by SN, 1-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elabgt | |- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab6g | |- ( A e. B -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |
|
| 2 | pm5.74 | |- ( ( x = A -> ( ph <-> ps ) ) <-> ( ( x = A -> ph ) <-> ( x = A -> ps ) ) ) |
|
| 3 | 2 | biimpi | |- ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A -> ph ) <-> ( x = A -> ps ) ) ) |
| 4 | 3 | alimi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( ( x = A -> ph ) <-> ( x = A -> ps ) ) ) |
| 5 | albi | |- ( A. x ( ( x = A -> ph ) <-> ( x = A -> ps ) ) -> ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) ) |
|
| 6 | 4 5 | syl | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) ) |
| 7 | 1 6 | sylan9bb | |- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> A. x ( x = A -> ps ) ) ) |
| 8 | 19.23v | |- ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) |
|
| 9 | elisset | |- ( A e. B -> E. x x = A ) |
|
| 10 | pm5.5 | |- ( E. x x = A -> ( ( E. x x = A -> ps ) <-> ps ) ) |
|
| 11 | 9 10 | syl | |- ( A e. B -> ( ( E. x x = A -> ps ) <-> ps ) ) |
| 12 | 8 11 | bitrid | |- ( A e. B -> ( A. x ( x = A -> ps ) <-> ps ) ) |
| 13 | 12 | adantr | |- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ( x = A -> ps ) <-> ps ) ) |
| 14 | 7 13 | bitrd | |- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) ) |