This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction. Class version of sb6 . (Contributed by SN, 5-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elab6g | |- ( A e. V -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( y = A -> ( y e. { x | ph } <-> A e. { x | ph } ) ) |
|
| 2 | eqeq2 | |- ( y = A -> ( x = y <-> x = A ) ) |
|
| 3 | 2 | imbi1d | |- ( y = A -> ( ( x = y -> ph ) <-> ( x = A -> ph ) ) ) |
| 4 | 3 | albidv | |- ( y = A -> ( A. x ( x = y -> ph ) <-> A. x ( x = A -> ph ) ) ) |
| 5 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 6 | sb6 | |- ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) |
|
| 7 | 5 6 | bitri | |- ( y e. { x | ph } <-> A. x ( x = y -> ph ) ) |
| 8 | 1 4 7 | vtoclbg | |- ( A e. V -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |