This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ehl0base.e | |- E = ( EEhil ` 0 ) |
|
| ehl0base.0 | |- .0. = ( 0g ` E ) |
||
| Assertion | ehl0 | |- ( Base ` E ) = { .0. } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehl0base.e | |- E = ( EEhil ` 0 ) |
|
| 2 | ehl0base.0 | |- .0. = ( 0g ` E ) |
|
| 3 | 1 | ehl0base | |- ( Base ` E ) = { (/) } |
| 4 | ovex | |- ( 1 ... 0 ) e. _V |
|
| 5 | 0nn0 | |- 0 e. NN0 |
|
| 6 | 1 | ehlval | |- ( 0 e. NN0 -> E = ( RR^ ` ( 1 ... 0 ) ) ) |
| 7 | 5 6 | ax-mp | |- E = ( RR^ ` ( 1 ... 0 ) ) |
| 8 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 9 | 8 | xpeq1i | |- ( ( 1 ... 0 ) X. { 0 } ) = ( (/) X. { 0 } ) |
| 10 | 9 | eqcomi | |- ( (/) X. { 0 } ) = ( ( 1 ... 0 ) X. { 0 } ) |
| 11 | 7 10 | rrx0 | |- ( ( 1 ... 0 ) e. _V -> ( 0g ` E ) = ( (/) X. { 0 } ) ) |
| 12 | 4 11 | ax-mp | |- ( 0g ` E ) = ( (/) X. { 0 } ) |
| 13 | 2 12 | eqtri | |- .0. = ( (/) X. { 0 } ) |
| 14 | 0xp | |- ( (/) X. { 0 } ) = (/) |
|
| 15 | 13 14 | eqtri | |- .0. = (/) |
| 16 | 15 | eqcomi | |- (/) = .0. |
| 17 | 16 | sneqi | |- { (/) } = { .0. } |
| 18 | 3 17 | eqtri | |- ( Base ` E ) = { .0. } |