This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The Euclidean space of dimension 0 consists of the neutral element only.
(Contributed by AV, 12-Feb-2023)
|
|
Ref |
Expression |
|
Hypotheses |
ehl0base.e |
|
|
|
ehl0base.0 |
|
|
Assertion |
ehl0 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl0base.e |
|
| 2 |
|
ehl0base.0 |
|
| 3 |
1
|
ehl0base |
|
| 4 |
|
ovex |
|
| 5 |
|
0nn0 |
|
| 6 |
1
|
ehlval |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
|
fz10 |
|
| 9 |
8
|
xpeq1i |
|
| 10 |
9
|
eqcomi |
|
| 11 |
7 10
|
rrx0 |
|
| 12 |
4 11
|
ax-mp |
|
| 13 |
2 12
|
eqtri |
|
| 14 |
|
0xp |
|
| 15 |
13 14
|
eqtri |
|
| 16 |
15
|
eqcomi |
|
| 17 |
16
|
sneqi |
|
| 18 |
3 17
|
eqtri |
|