This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Euclidean distance function in a real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ehleudis.i | |- I = ( 1 ... N ) |
|
| ehleudis.e | |- E = ( EEhil ` N ) |
||
| ehleudis.x | |- X = ( RR ^m I ) |
||
| ehleudis.d | |- D = ( dist ` E ) |
||
| Assertion | ehleudis | |- ( N e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehleudis.i | |- I = ( 1 ... N ) |
|
| 2 | ehleudis.e | |- E = ( EEhil ` N ) |
|
| 3 | ehleudis.x | |- X = ( RR ^m I ) |
|
| 4 | ehleudis.d | |- D = ( dist ` E ) |
|
| 5 | 2 | ehlval | |- ( N e. NN0 -> E = ( RR^ ` ( 1 ... N ) ) ) |
| 6 | 5 | fveq2d | |- ( N e. NN0 -> ( dist ` E ) = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
| 7 | 4 6 | eqtrid | |- ( N e. NN0 -> D = ( dist ` ( RR^ ` ( 1 ... N ) ) ) ) |
| 8 | fzfi | |- ( 1 ... N ) e. Fin |
|
| 9 | 1 8 | eqeltri | |- I e. Fin |
| 10 | 1 | eqcomi | |- ( 1 ... N ) = I |
| 11 | 10 | fveq2i | |- ( RR^ ` ( 1 ... N ) ) = ( RR^ ` I ) |
| 12 | 11 | fveq2i | |- ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( dist ` ( RR^ ` I ) ) |
| 13 | eqid | |- ( RR^ ` I ) = ( RR^ ` I ) |
|
| 14 | 13 3 | rrxdsfi | |- ( I e. Fin -> ( dist ` ( RR^ ` I ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 15 | 12 14 | eqtrid | |- ( I e. Fin -> ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 16 | 9 15 | mp1i | |- ( N e. NN0 -> ( dist ` ( RR^ ` ( 1 ... N ) ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 17 | 7 16 | eqtrd | |- ( N e. NN0 -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |