This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Euclidean space of dimension 0 consists of the neutral element only. (Contributed by AV, 12-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ehl0base.e | ⊢ 𝐸 = ( 𝔼hil ‘ 0 ) | |
| ehl0base.0 | ⊢ 0 = ( 0g ‘ 𝐸 ) | ||
| Assertion | ehl0 | ⊢ ( Base ‘ 𝐸 ) = { 0 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ehl0base.e | ⊢ 𝐸 = ( 𝔼hil ‘ 0 ) | |
| 2 | ehl0base.0 | ⊢ 0 = ( 0g ‘ 𝐸 ) | |
| 3 | 1 | ehl0base | ⊢ ( Base ‘ 𝐸 ) = { ∅ } |
| 4 | ovex | ⊢ ( 1 ... 0 ) ∈ V | |
| 5 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 6 | 1 | ehlval | ⊢ ( 0 ∈ ℕ0 → 𝐸 = ( ℝ^ ‘ ( 1 ... 0 ) ) ) |
| 7 | 5 6 | ax-mp | ⊢ 𝐸 = ( ℝ^ ‘ ( 1 ... 0 ) ) |
| 8 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 9 | 8 | xpeq1i | ⊢ ( ( 1 ... 0 ) × { 0 } ) = ( ∅ × { 0 } ) |
| 10 | 9 | eqcomi | ⊢ ( ∅ × { 0 } ) = ( ( 1 ... 0 ) × { 0 } ) |
| 11 | 7 10 | rrx0 | ⊢ ( ( 1 ... 0 ) ∈ V → ( 0g ‘ 𝐸 ) = ( ∅ × { 0 } ) ) |
| 12 | 4 11 | ax-mp | ⊢ ( 0g ‘ 𝐸 ) = ( ∅ × { 0 } ) |
| 13 | 2 12 | eqtri | ⊢ 0 = ( ∅ × { 0 } ) |
| 14 | 0xp | ⊢ ( ∅ × { 0 } ) = ∅ | |
| 15 | 13 14 | eqtri | ⊢ 0 = ∅ |
| 16 | 15 | eqcomi | ⊢ ∅ = 0 |
| 17 | 16 | sneqi | ⊢ { ∅ } = { 0 } |
| 18 | 3 17 | eqtri | ⊢ ( Base ‘ 𝐸 ) = { 0 } |