This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020) (Proof shortened by AV, 17-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | egrsubgr | |- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> S SubGraph G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( Vtx ` S ) C_ ( Vtx ` G ) ) |
|
| 2 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 3 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 4 | 2 3 | edg0iedg0 | |- ( Fun ( iEdg ` S ) -> ( ( Edg ` S ) = (/) <-> ( iEdg ` S ) = (/) ) ) |
| 5 | 4 | adantl | |- ( ( ( G e. W /\ S e. U ) /\ Fun ( iEdg ` S ) ) -> ( ( Edg ` S ) = (/) <-> ( iEdg ` S ) = (/) ) ) |
| 6 | res0 | |- ( ( iEdg ` G ) |` (/) ) = (/) |
|
| 7 | 6 | eqcomi | |- (/) = ( ( iEdg ` G ) |` (/) ) |
| 8 | id | |- ( ( iEdg ` S ) = (/) -> ( iEdg ` S ) = (/) ) |
|
| 9 | dmeq | |- ( ( iEdg ` S ) = (/) -> dom ( iEdg ` S ) = dom (/) ) |
|
| 10 | dm0 | |- dom (/) = (/) |
|
| 11 | 9 10 | eqtrdi | |- ( ( iEdg ` S ) = (/) -> dom ( iEdg ` S ) = (/) ) |
| 12 | 11 | reseq2d | |- ( ( iEdg ` S ) = (/) -> ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) = ( ( iEdg ` G ) |` (/) ) ) |
| 13 | 7 8 12 | 3eqtr4a | |- ( ( iEdg ` S ) = (/) -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 14 | 5 13 | biimtrdi | |- ( ( ( G e. W /\ S e. U ) /\ Fun ( iEdg ` S ) ) -> ( ( Edg ` S ) = (/) -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) ) |
| 15 | 14 | impr | |- ( ( ( G e. W /\ S e. U ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 16 | 15 | 3adant2 | |- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) ) |
| 17 | 0ss | |- (/) C_ ~P ( Vtx ` S ) |
|
| 18 | sseq1 | |- ( ( Edg ` S ) = (/) -> ( ( Edg ` S ) C_ ~P ( Vtx ` S ) <-> (/) C_ ~P ( Vtx ` S ) ) ) |
|
| 19 | 17 18 | mpbiri | |- ( ( Edg ` S ) = (/) -> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |
| 20 | 19 | adantl | |- ( ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) -> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |
| 21 | 20 | 3ad2ant3 | |- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |
| 22 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 23 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 24 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 25 | 22 23 2 24 3 | issubgr | |- ( ( G e. W /\ S e. U ) -> ( S SubGraph G <-> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) ) |
| 26 | 25 | 3ad2ant1 | |- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> ( S SubGraph G <-> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) = ( ( iEdg ` G ) |` dom ( iEdg ` S ) ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) ) |
| 27 | 1 16 21 26 | mpbir3and | |- ( ( ( G e. W /\ S e. U ) /\ ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( Fun ( iEdg ` S ) /\ ( Edg ` S ) = (/) ) ) -> S SubGraph G ) |