This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0grsubgr | |- ( G e. W -> (/) SubGraph G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ ( Vtx ` G ) |
|
| 2 | dm0 | |- dom (/) = (/) |
|
| 3 | 2 | reseq2i | |- ( ( iEdg ` G ) |` dom (/) ) = ( ( iEdg ` G ) |` (/) ) |
| 4 | res0 | |- ( ( iEdg ` G ) |` (/) ) = (/) |
|
| 5 | 3 4 | eqtr2i | |- (/) = ( ( iEdg ` G ) |` dom (/) ) |
| 6 | 0ss | |- (/) C_ ~P (/) |
|
| 7 | 1 5 6 | 3pm3.2i | |- ( (/) C_ ( Vtx ` G ) /\ (/) = ( ( iEdg ` G ) |` dom (/) ) /\ (/) C_ ~P (/) ) |
| 8 | 0ex | |- (/) e. _V |
|
| 9 | vtxval0 | |- ( Vtx ` (/) ) = (/) |
|
| 10 | 9 | eqcomi | |- (/) = ( Vtx ` (/) ) |
| 11 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 12 | iedgval0 | |- ( iEdg ` (/) ) = (/) |
|
| 13 | 12 | eqcomi | |- (/) = ( iEdg ` (/) ) |
| 14 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 15 | edgval | |- ( Edg ` (/) ) = ran ( iEdg ` (/) ) |
|
| 16 | 12 | rneqi | |- ran ( iEdg ` (/) ) = ran (/) |
| 17 | rn0 | |- ran (/) = (/) |
|
| 18 | 15 16 17 | 3eqtrri | |- (/) = ( Edg ` (/) ) |
| 19 | 10 11 13 14 18 | issubgr | |- ( ( G e. W /\ (/) e. _V ) -> ( (/) SubGraph G <-> ( (/) C_ ( Vtx ` G ) /\ (/) = ( ( iEdg ` G ) |` dom (/) ) /\ (/) C_ ~P (/) ) ) ) |
| 20 | 8 19 | mpan2 | |- ( G e. W -> ( (/) SubGraph G <-> ( (/) C_ ( Vtx ` G ) /\ (/) = ( ( iEdg ` G ) |` dom (/) ) /\ (/) C_ ~P (/) ) ) ) |
| 21 | 7 20 | mpbiri | |- ( G e. W -> (/) SubGraph G ) |