This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020) (Proof shortened by AV, 17-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | egrsubgr | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → 𝑆 SubGraph 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 3 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 4 | 2 3 | edg0iedg0 | ⊢ ( Fun ( iEdg ‘ 𝑆 ) → ( ( Edg ‘ 𝑆 ) = ∅ ↔ ( iEdg ‘ 𝑆 ) = ∅ ) ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ Fun ( iEdg ‘ 𝑆 ) ) → ( ( Edg ‘ 𝑆 ) = ∅ ↔ ( iEdg ‘ 𝑆 ) = ∅ ) ) |
| 6 | res0 | ⊢ ( ( iEdg ‘ 𝐺 ) ↾ ∅ ) = ∅ | |
| 7 | 6 | eqcomi | ⊢ ∅ = ( ( iEdg ‘ 𝐺 ) ↾ ∅ ) |
| 8 | id | ⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → ( iEdg ‘ 𝑆 ) = ∅ ) | |
| 9 | dmeq | ⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → dom ( iEdg ‘ 𝑆 ) = dom ∅ ) | |
| 10 | dm0 | ⊢ dom ∅ = ∅ | |
| 11 | 9 10 | eqtrdi | ⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → dom ( iEdg ‘ 𝑆 ) = ∅ ) |
| 12 | 11 | reseq2d | ⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ ∅ ) ) |
| 13 | 7 8 12 | 3eqtr4a | ⊢ ( ( iEdg ‘ 𝑆 ) = ∅ → ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
| 14 | 5 13 | biimtrdi | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ Fun ( iEdg ‘ 𝑆 ) ) → ( ( Edg ‘ 𝑆 ) = ∅ → ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) ) |
| 15 | 14 | impr | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
| 16 | 15 | 3adant2 | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ) |
| 17 | 0ss | ⊢ ∅ ⊆ 𝒫 ( Vtx ‘ 𝑆 ) | |
| 18 | sseq1 | ⊢ ( ( Edg ‘ 𝑆 ) = ∅ → ( ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ∅ ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) | |
| 19 | 17 18 | mpbiri | ⊢ ( ( Edg ‘ 𝑆 ) = ∅ → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 20 | 19 | adantl | ⊢ ( ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 21 | 20 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 22 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 23 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 24 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 25 | 22 23 2 24 3 | issubgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → ( 𝑆 SubGraph 𝐺 ↔ ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) = ( ( iEdg ‘ 𝐺 ) ↾ dom ( iEdg ‘ 𝑆 ) ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) ) |
| 27 | 1 16 21 26 | mpbir3and | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ 𝑈 ) ∧ ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( Fun ( iEdg ‘ 𝑆 ) ∧ ( Edg ‘ 𝑆 ) = ∅ ) ) → 𝑆 SubGraph 𝐺 ) |