This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a class A is a magma. (Contributed by AV, 28-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efmndmgm.g | |- G = ( EndoFMnd ` A ) |
|
| Assertion | efmndmgm | |- G e. Mgm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndmgm.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | 1 2 3 | efmndcl | |- ( ( f e. ( Base ` G ) /\ g e. ( Base ` G ) ) -> ( f ( +g ` G ) g ) e. ( Base ` G ) ) |
| 5 | 4 | rgen2 | |- A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) |
| 6 | 1 | fvexi | |- G e. _V |
| 7 | 2 3 | ismgm | |- ( G e. _V -> ( G e. Mgm <-> A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) ) ) |
| 8 | 6 7 | ax-mp | |- ( G e. Mgm <-> A. f e. ( Base ` G ) A. g e. ( Base ` G ) ( f ( +g ` G ) g ) e. ( Base ` G ) ) |
| 9 | 5 8 | mpbir | |- G e. Mgm |