This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the monoid of endofunctions on set x . We represent the monoid as the set of functions from x to itself ( ( x ^m x ) ) under function composition, and topologize it as a function space assuming the set is discrete. Analogous to the former definition of SymGrp , see df-symg and symgvalstruct . (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-efmnd | |- EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cefmnd | |- EndoFMnd |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | 1 | cv | |- x |
| 4 | cmap | |- ^m |
|
| 5 | 3 3 4 | co | |- ( x ^m x ) |
| 6 | vb | |- b |
|
| 7 | cbs | |- Base |
|
| 8 | cnx | |- ndx |
|
| 9 | 8 7 | cfv | |- ( Base ` ndx ) |
| 10 | 6 | cv | |- b |
| 11 | 9 10 | cop | |- <. ( Base ` ndx ) , b >. |
| 12 | cplusg | |- +g |
|
| 13 | 8 12 | cfv | |- ( +g ` ndx ) |
| 14 | vf | |- f |
|
| 15 | vg | |- g |
|
| 16 | 14 | cv | |- f |
| 17 | 15 | cv | |- g |
| 18 | 16 17 | ccom | |- ( f o. g ) |
| 19 | 14 15 10 10 18 | cmpo | |- ( f e. b , g e. b |-> ( f o. g ) ) |
| 20 | 13 19 | cop | |- <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. |
| 21 | cts | |- TopSet |
|
| 22 | 8 21 | cfv | |- ( TopSet ` ndx ) |
| 23 | cpt | |- Xt_ |
|
| 24 | 3 | cpw | |- ~P x |
| 25 | 24 | csn | |- { ~P x } |
| 26 | 3 25 | cxp | |- ( x X. { ~P x } ) |
| 27 | 26 23 | cfv | |- ( Xt_ ` ( x X. { ~P x } ) ) |
| 28 | 22 27 | cop | |- <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. |
| 29 | 11 20 28 | ctp | |- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } |
| 30 | 6 5 29 | csb | |- [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } |
| 31 | 1 2 30 | cmpt | |- ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) |
| 32 | 0 31 | wceq | |- EndoFMnd = ( x e. _V |-> [_ ( x ^m x ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( f e. b , g e. b |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( x X. { ~P x } ) ) >. } ) |