This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efieq | |- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | recn | |- ( B e. RR -> B e. CC ) |
|
| 3 | efival | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
|
| 4 | efival | |- ( B e. CC -> ( exp ` ( _i x. B ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) |
|
| 5 | 3 4 | eqeqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) |
| 6 | 1 2 5 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) |
| 7 | recoscl | |- ( A e. RR -> ( cos ` A ) e. RR ) |
|
| 8 | resincl | |- ( A e. RR -> ( sin ` A ) e. RR ) |
|
| 9 | 7 8 | jca | |- ( A e. RR -> ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) ) |
| 10 | recoscl | |- ( B e. RR -> ( cos ` B ) e. RR ) |
|
| 11 | resincl | |- ( B e. RR -> ( sin ` B ) e. RR ) |
|
| 12 | 10 11 | jca | |- ( B e. RR -> ( ( cos ` B ) e. RR /\ ( sin ` B ) e. RR ) ) |
| 13 | cru | |- ( ( ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) /\ ( ( cos ` B ) e. RR /\ ( sin ` B ) e. RR ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) |
|
| 14 | 9 12 13 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) |
| 15 | 6 14 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( ( exp ` ( _i x. A ) ) = ( exp ` ( _i x. B ) ) <-> ( ( cos ` A ) = ( cos ` B ) /\ ( sin ` A ) = ( sin ` B ) ) ) ) |