This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponentials of two imaginary numbers are equal iff their sine and cosine components are equal. (Contributed by Paul Chapman, 15-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efieq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( i · 𝐵 ) ) ↔ ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ∧ ( sin ‘ 𝐴 ) = ( sin ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 3 | efival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 4 | efival | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ ( i · 𝐵 ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) | |
| 5 | 3 4 | eqeqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( i · 𝐵 ) ) ↔ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
| 6 | 1 2 5 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( i · 𝐵 ) ) ↔ ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
| 7 | recoscl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | resincl | ⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | 7 8 | jca | ⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) ) |
| 10 | recoscl | ⊢ ( 𝐵 ∈ ℝ → ( cos ‘ 𝐵 ) ∈ ℝ ) | |
| 11 | resincl | ⊢ ( 𝐵 ∈ ℝ → ( sin ‘ 𝐵 ) ∈ ℝ ) | |
| 12 | 10 11 | jca | ⊢ ( 𝐵 ∈ ℝ → ( ( cos ‘ 𝐵 ) ∈ ℝ ∧ ( sin ‘ 𝐵 ) ∈ ℝ ) ) |
| 13 | cru | ⊢ ( ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) ∧ ( ( cos ‘ 𝐵 ) ∈ ℝ ∧ ( sin ‘ 𝐵 ) ∈ ℝ ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ↔ ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ∧ ( sin ‘ 𝐴 ) = ( sin ‘ 𝐵 ) ) ) ) | |
| 14 | 9 12 13 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ↔ ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ∧ ( sin ‘ 𝐴 ) = ( sin ‘ 𝐵 ) ) ) ) |
| 15 | 6 14 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( i · 𝐵 ) ) ↔ ( ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ∧ ( sin ‘ 𝐴 ) = ( sin ‘ 𝐵 ) ) ) ) |