This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efgredleme . (Contributed by Mario Carneiro, 4-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
||
| efgredlem.2 | |- ( ph -> A e. dom S ) |
||
| efgredlem.3 | |- ( ph -> B e. dom S ) |
||
| efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
||
| efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
||
| efgredlemb.k | |- K = ( ( ( # ` A ) - 1 ) - 1 ) |
||
| efgredlemb.l | |- L = ( ( ( # ` B ) - 1 ) - 1 ) |
||
| Assertion | efgredlemf | |- ( ph -> ( ( A ` K ) e. W /\ ( B ` L ) e. W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | efgredlem.1 | |- ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) |
|
| 8 | efgredlem.2 | |- ( ph -> A e. dom S ) |
|
| 9 | efgredlem.3 | |- ( ph -> B e. dom S ) |
|
| 10 | efgredlem.4 | |- ( ph -> ( S ` A ) = ( S ` B ) ) |
|
| 11 | efgredlem.5 | |- ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) |
|
| 12 | efgredlemb.k | |- K = ( ( ( # ` A ) - 1 ) - 1 ) |
|
| 13 | efgredlemb.l | |- L = ( ( ( # ` B ) - 1 ) - 1 ) |
|
| 14 | 1 2 3 4 5 6 | efgsdm | |- ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` A ) ) ( A ` i ) e. ran ( T ` ( A ` ( i - 1 ) ) ) ) ) |
| 15 | 14 | simp1bi | |- ( A e. dom S -> A e. ( Word W \ { (/) } ) ) |
| 16 | 8 15 | syl | |- ( ph -> A e. ( Word W \ { (/) } ) ) |
| 17 | 16 | eldifad | |- ( ph -> A e. Word W ) |
| 18 | wrdf | |- ( A e. Word W -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
|
| 19 | 17 18 | syl | |- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> W ) |
| 20 | fzossfz | |- ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ... ( ( # ` A ) - 1 ) ) |
|
| 21 | lencl | |- ( A e. Word W -> ( # ` A ) e. NN0 ) |
|
| 22 | 17 21 | syl | |- ( ph -> ( # ` A ) e. NN0 ) |
| 23 | 22 | nn0zd | |- ( ph -> ( # ` A ) e. ZZ ) |
| 24 | fzoval | |- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
|
| 25 | 23 24 | syl | |- ( ph -> ( 0 ..^ ( # ` A ) ) = ( 0 ... ( ( # ` A ) - 1 ) ) ) |
| 26 | 20 25 | sseqtrrid | |- ( ph -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
| 27 | 1 2 3 4 5 6 7 8 9 10 11 | efgredlema | |- ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |
| 28 | 27 | simpld | |- ( ph -> ( ( # ` A ) - 1 ) e. NN ) |
| 29 | fzo0end | |- ( ( ( # ` A ) - 1 ) e. NN -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
|
| 30 | 28 29 | syl | |- ( ph -> ( ( ( # ` A ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 31 | 12 30 | eqeltrid | |- ( ph -> K e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) |
| 32 | 26 31 | sseldd | |- ( ph -> K e. ( 0 ..^ ( # ` A ) ) ) |
| 33 | 19 32 | ffvelcdmd | |- ( ph -> ( A ` K ) e. W ) |
| 34 | 1 2 3 4 5 6 | efgsdm | |- ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` B ) ) ( B ` i ) e. ran ( T ` ( B ` ( i - 1 ) ) ) ) ) |
| 35 | 34 | simp1bi | |- ( B e. dom S -> B e. ( Word W \ { (/) } ) ) |
| 36 | 9 35 | syl | |- ( ph -> B e. ( Word W \ { (/) } ) ) |
| 37 | 36 | eldifad | |- ( ph -> B e. Word W ) |
| 38 | wrdf | |- ( B e. Word W -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
|
| 39 | 37 38 | syl | |- ( ph -> B : ( 0 ..^ ( # ` B ) ) --> W ) |
| 40 | fzossfz | |- ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ... ( ( # ` B ) - 1 ) ) |
|
| 41 | lencl | |- ( B e. Word W -> ( # ` B ) e. NN0 ) |
|
| 42 | 37 41 | syl | |- ( ph -> ( # ` B ) e. NN0 ) |
| 43 | 42 | nn0zd | |- ( ph -> ( # ` B ) e. ZZ ) |
| 44 | fzoval | |- ( ( # ` B ) e. ZZ -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
|
| 45 | 43 44 | syl | |- ( ph -> ( 0 ..^ ( # ` B ) ) = ( 0 ... ( ( # ` B ) - 1 ) ) ) |
| 46 | 40 45 | sseqtrrid | |- ( ph -> ( 0 ..^ ( ( # ` B ) - 1 ) ) C_ ( 0 ..^ ( # ` B ) ) ) |
| 47 | fzo0end | |- ( ( ( # ` B ) - 1 ) e. NN -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
|
| 48 | 27 47 | simpl2im | |- ( ph -> ( ( ( # ` B ) - 1 ) - 1 ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 49 | 13 48 | eqeltrid | |- ( ph -> L e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
| 50 | 46 49 | sseldd | |- ( ph -> L e. ( 0 ..^ ( # ` B ) ) ) |
| 51 | 39 50 | ffvelcdmd | |- ( ph -> ( B ` L ) e. W ) |
| 52 | 33 51 | jca | |- ( ph -> ( ( A ` K ) e. W /\ ( B ` L ) e. W ) ) |