This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efgrelex . Define an auxiliary equivalence relation L such that A L B if there are sequences from A to B passing through the same reduced word. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| efgval.r | |- .~ = ( ~FG ` I ) |
||
| efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
||
| efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
||
| efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
||
| efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
||
| efgcpbllem.1 | |- L = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
||
| Assertion | efgcpbllema | |- ( X L Y <-> ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | efgval.r | |- .~ = ( ~FG ` I ) |
|
| 3 | efgval2.m | |- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
|
| 4 | efgval2.t | |- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
|
| 5 | efgred.d | |- D = ( W \ U_ x e. W ran ( T ` x ) ) |
|
| 6 | efgred.s | |- S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
|
| 7 | efgcpbllem.1 | |- L = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
|
| 8 | oveq2 | |- ( i = X -> ( A ++ i ) = ( A ++ X ) ) |
|
| 9 | 8 | oveq1d | |- ( i = X -> ( ( A ++ i ) ++ B ) = ( ( A ++ X ) ++ B ) ) |
| 10 | oveq2 | |- ( j = Y -> ( A ++ j ) = ( A ++ Y ) ) |
|
| 11 | 10 | oveq1d | |- ( j = Y -> ( ( A ++ j ) ++ B ) = ( ( A ++ Y ) ++ B ) ) |
| 12 | 9 11 | breqan12d | |- ( ( i = X /\ j = Y ) -> ( ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) <-> ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |
| 13 | vex | |- i e. _V |
|
| 14 | vex | |- j e. _V |
|
| 15 | 13 14 | prss | |- ( ( i e. W /\ j e. W ) <-> { i , j } C_ W ) |
| 16 | 15 | anbi1i | |- ( ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) <-> ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) ) |
| 17 | 16 | opabbii | |- { <. i , j >. | ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } = { <. i , j >. | ( { i , j } C_ W /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
| 18 | 7 17 | eqtr4i | |- L = { <. i , j >. | ( ( i e. W /\ j e. W ) /\ ( ( A ++ i ) ++ B ) .~ ( ( A ++ j ) ++ B ) ) } |
| 19 | 12 18 | brab2a | |- ( X L Y <-> ( ( X e. W /\ Y e. W ) /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |
| 20 | df-3an | |- ( ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) <-> ( ( X e. W /\ Y e. W ) /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |
|
| 21 | 19 20 | bitr4i | |- ( X L Y <-> ( X e. W /\ Y e. W /\ ( ( A ++ X ) ++ B ) .~ ( ( A ++ Y ) ++ B ) ) ) |