This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second Chebyshev function is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efchpcl | |- ( A e. RR -> ( exp ` ( psi ` A ) ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpval | |- ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
|
| 2 | 1 | fveq2d | |- ( A e. RR -> ( exp ` ( psi ` A ) ) = ( exp ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) ) |
| 3 | fzfid | |- ( A e. RR -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
|
| 4 | elfznn | |- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
|
| 5 | 4 | adantl | |- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
| 6 | vmacl | |- ( n e. NN -> ( Lam ` n ) e. RR ) |
|
| 7 | 5 6 | syl | |- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR ) |
| 8 | efvmacl | |- ( n e. NN -> ( exp ` ( Lam ` n ) ) e. NN ) |
|
| 9 | 5 8 | syl | |- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( exp ` ( Lam ` n ) ) e. NN ) |
| 10 | 3 7 9 | efnnfsumcl | |- ( A e. RR -> ( exp ` sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) e. NN ) |
| 11 | 2 10 | eqeltrd | |- ( A e. RR -> ( exp ` ( psi ` A ) ) e. NN ) |