This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second Chebyshev function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpge0 | |- ( A e. RR -> 0 <_ ( psi ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 2 | efchpcl | |- ( A e. RR -> ( exp ` ( psi ` A ) ) e. NN ) |
|
| 3 | 2 | nnge1d | |- ( A e. RR -> 1 <_ ( exp ` ( psi ` A ) ) ) |
| 4 | 1 3 | eqbrtrid | |- ( A e. RR -> ( exp ` 0 ) <_ ( exp ` ( psi ` A ) ) ) |
| 5 | 0re | |- 0 e. RR |
|
| 6 | chpcl | |- ( A e. RR -> ( psi ` A ) e. RR ) |
|
| 7 | efle | |- ( ( 0 e. RR /\ ( psi ` A ) e. RR ) -> ( 0 <_ ( psi ` A ) <-> ( exp ` 0 ) <_ ( exp ` ( psi ` A ) ) ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( A e. RR -> ( 0 <_ ( psi ` A ) <-> ( exp ` 0 ) <_ ( exp ` ( psi ` A ) ) ) ) |
| 9 | 4 8 | mpbird | |- ( A e. RR -> 0 <_ ( psi ` A ) ) |