This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the exponential function as an exponent to the power _e . (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecxp | |- ( A e. CC -> ( _e ^c A ) = ( exp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ere | |- _e e. RR |
|
| 2 | 1 | recni | |- _e e. CC |
| 3 | ene0 | |- _e =/= 0 |
|
| 4 | cxpef | |- ( ( _e e. CC /\ _e =/= 0 /\ A e. CC ) -> ( _e ^c A ) = ( exp ` ( A x. ( log ` _e ) ) ) ) |
|
| 5 | 2 3 4 | mp3an12 | |- ( A e. CC -> ( _e ^c A ) = ( exp ` ( A x. ( log ` _e ) ) ) ) |
| 6 | loge | |- ( log ` _e ) = 1 |
|
| 7 | 6 | oveq2i | |- ( A x. ( log ` _e ) ) = ( A x. 1 ) |
| 8 | mulrid | |- ( A e. CC -> ( A x. 1 ) = A ) |
|
| 9 | 7 8 | eqtrid | |- ( A e. CC -> ( A x. ( log ` _e ) ) = A ) |
| 10 | 9 | fveq2d | |- ( A e. CC -> ( exp ` ( A x. ( log ` _e ) ) ) = ( exp ` A ) ) |
| 11 | 5 10 | eqtrd | |- ( A e. CC -> ( _e ^c A ) = ( exp ` A ) ) |