This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the exponential function as an exponent to the power _e . (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecxp | ⊢ ( 𝐴 ∈ ℂ → ( e ↑𝑐 𝐴 ) = ( exp ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ere | ⊢ e ∈ ℝ | |
| 2 | 1 | recni | ⊢ e ∈ ℂ |
| 3 | ene0 | ⊢ e ≠ 0 | |
| 4 | cxpef | ⊢ ( ( e ∈ ℂ ∧ e ≠ 0 ∧ 𝐴 ∈ ℂ ) → ( e ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) ) | |
| 5 | 2 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( e ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) ) |
| 6 | loge | ⊢ ( log ‘ e ) = 1 | |
| 7 | 6 | oveq2i | ⊢ ( 𝐴 · ( log ‘ e ) ) = ( 𝐴 · 1 ) |
| 8 | mulrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 9 | 7 8 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( log ‘ e ) ) = 𝐴 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · ( log ‘ e ) ) ) = ( exp ‘ 𝐴 ) ) |
| 11 | 5 10 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( e ↑𝑐 𝐴 ) = ( exp ‘ 𝐴 ) ) |