This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) Generalization of quseccl for arbitrary sets G . (Revised by AV, 24-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quseccl0.e | |- .~ = ( G ~QG S ) |
|
| quseccl0.h | |- H = ( G /s .~ ) |
||
| quseccl0.c | |- C = ( Base ` G ) |
||
| quseccl0.b | |- B = ( Base ` H ) |
||
| Assertion | quseccl0 | |- ( ( G e. V /\ X e. C ) -> [ X ] .~ e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quseccl0.e | |- .~ = ( G ~QG S ) |
|
| 2 | quseccl0.h | |- H = ( G /s .~ ) |
|
| 3 | quseccl0.c | |- C = ( Base ` G ) |
|
| 4 | quseccl0.b | |- B = ( Base ` H ) |
|
| 5 | 1 | ovexi | |- .~ e. _V |
| 6 | 5 | ecelqsi | |- ( X e. C -> [ X ] .~ e. ( C /. .~ ) ) |
| 7 | 6 | adantl | |- ( ( G e. V /\ X e. C ) -> [ X ] .~ e. ( C /. .~ ) ) |
| 8 | 2 | a1i | |- ( ( G e. V /\ X e. C ) -> H = ( G /s .~ ) ) |
| 9 | 3 | a1i | |- ( ( G e. V /\ X e. C ) -> C = ( Base ` G ) ) |
| 10 | 5 | a1i | |- ( ( G e. V /\ X e. C ) -> .~ e. _V ) |
| 11 | simpl | |- ( ( G e. V /\ X e. C ) -> G e. V ) |
|
| 12 | 8 9 10 11 | qusbas | |- ( ( G e. V /\ X e. C ) -> ( C /. .~ ) = ( Base ` H ) ) |
| 13 | 12 4 | eqtr4di | |- ( ( G e. V /\ X e. C ) -> ( C /. .~ ) = B ) |
| 14 | 7 13 | eleqtrd | |- ( ( G e. V /\ X e. C ) -> [ X ] .~ e. B ) |