This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3optocl.1 | |- R = ( D X. F ) |
|
| 3optocl.2 | |- ( <. x , y >. = A -> ( ph <-> ps ) ) |
||
| 3optocl.3 | |- ( <. z , w >. = B -> ( ps <-> ch ) ) |
||
| 3optocl.4 | |- ( <. v , u >. = C -> ( ch <-> th ) ) |
||
| 3optocl.5 | |- ( ( ( x e. D /\ y e. F ) /\ ( z e. D /\ w e. F ) /\ ( v e. D /\ u e. F ) ) -> ph ) |
||
| Assertion | 3optocl | |- ( ( A e. R /\ B e. R /\ C e. R ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3optocl.1 | |- R = ( D X. F ) |
|
| 2 | 3optocl.2 | |- ( <. x , y >. = A -> ( ph <-> ps ) ) |
|
| 3 | 3optocl.3 | |- ( <. z , w >. = B -> ( ps <-> ch ) ) |
|
| 4 | 3optocl.4 | |- ( <. v , u >. = C -> ( ch <-> th ) ) |
|
| 5 | 3optocl.5 | |- ( ( ( x e. D /\ y e. F ) /\ ( z e. D /\ w e. F ) /\ ( v e. D /\ u e. F ) ) -> ph ) |
|
| 6 | 4 | imbi2d | |- ( <. v , u >. = C -> ( ( ( A e. R /\ B e. R ) -> ch ) <-> ( ( A e. R /\ B e. R ) -> th ) ) ) |
| 7 | 2 | imbi2d | |- ( <. x , y >. = A -> ( ( ( v e. D /\ u e. F ) -> ph ) <-> ( ( v e. D /\ u e. F ) -> ps ) ) ) |
| 8 | 3 | imbi2d | |- ( <. z , w >. = B -> ( ( ( v e. D /\ u e. F ) -> ps ) <-> ( ( v e. D /\ u e. F ) -> ch ) ) ) |
| 9 | 5 | 3expia | |- ( ( ( x e. D /\ y e. F ) /\ ( z e. D /\ w e. F ) ) -> ( ( v e. D /\ u e. F ) -> ph ) ) |
| 10 | 1 7 8 9 | 2optocl | |- ( ( A e. R /\ B e. R ) -> ( ( v e. D /\ u e. F ) -> ch ) ) |
| 11 | 10 | com12 | |- ( ( v e. D /\ u e. F ) -> ( ( A e. R /\ B e. R ) -> ch ) ) |
| 12 | 1 6 11 | optocl | |- ( C e. R -> ( ( A e. R /\ B e. R ) -> th ) ) |
| 13 | 12 | impcom | |- ( ( ( A e. R /\ B e. R ) /\ C e. R ) -> th ) |
| 14 | 13 | 3impa | |- ( ( A e. R /\ B e. R /\ C e. R ) -> th ) |