This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovcan.1 | |- C e. _V |
|
| caovcan.2 | |- ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F z ) -> y = z ) ) |
||
| Assertion | caovcan | |- ( ( A e. S /\ B e. S ) -> ( ( A F B ) = ( A F C ) -> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcan.1 | |- C e. _V |
|
| 2 | caovcan.2 | |- ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F z ) -> y = z ) ) |
|
| 3 | oveq1 | |- ( x = A -> ( x F y ) = ( A F y ) ) |
|
| 4 | oveq1 | |- ( x = A -> ( x F C ) = ( A F C ) ) |
|
| 5 | 3 4 | eqeq12d | |- ( x = A -> ( ( x F y ) = ( x F C ) <-> ( A F y ) = ( A F C ) ) ) |
| 6 | 5 | imbi1d | |- ( x = A -> ( ( ( x F y ) = ( x F C ) -> y = C ) <-> ( ( A F y ) = ( A F C ) -> y = C ) ) ) |
| 7 | oveq2 | |- ( y = B -> ( A F y ) = ( A F B ) ) |
|
| 8 | 7 | eqeq1d | |- ( y = B -> ( ( A F y ) = ( A F C ) <-> ( A F B ) = ( A F C ) ) ) |
| 9 | eqeq1 | |- ( y = B -> ( y = C <-> B = C ) ) |
|
| 10 | 8 9 | imbi12d | |- ( y = B -> ( ( ( A F y ) = ( A F C ) -> y = C ) <-> ( ( A F B ) = ( A F C ) -> B = C ) ) ) |
| 11 | oveq2 | |- ( z = C -> ( x F z ) = ( x F C ) ) |
|
| 12 | 11 | eqeq2d | |- ( z = C -> ( ( x F y ) = ( x F z ) <-> ( x F y ) = ( x F C ) ) ) |
| 13 | eqeq2 | |- ( z = C -> ( y = z <-> y = C ) ) |
|
| 14 | 12 13 | imbi12d | |- ( z = C -> ( ( ( x F y ) = ( x F z ) -> y = z ) <-> ( ( x F y ) = ( x F C ) -> y = C ) ) ) |
| 15 | 14 | imbi2d | |- ( z = C -> ( ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F z ) -> y = z ) ) <-> ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F C ) -> y = C ) ) ) ) |
| 16 | 1 15 2 | vtocl | |- ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F C ) -> y = C ) ) |
| 17 | 6 10 16 | vtocl2ga | |- ( ( A e. S /\ B e. S ) -> ( ( A F B ) = ( A F C ) -> B = C ) ) |