This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From complex differentiation to real differentiation. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcnre | |- ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn | |- RR e. { RR , CC } |
|
| 2 | 1 | a1i | |- ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> RR e. { RR , CC } ) |
| 3 | simpl | |- ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> F : CC --> CC ) |
|
| 4 | ssidd | |- ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> CC C_ CC ) |
|
| 5 | simpr | |- ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> RR C_ dom ( CC _D F ) ) |
|
| 6 | dvres3 | |- ( ( ( RR e. { RR , CC } /\ F : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D F ) ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
|
| 7 | 2 3 4 5 6 | syl22anc | |- ( ( F : CC --> CC /\ RR C_ dom ( CC _D F ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |