This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-division. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldiv.a | |- ( ph -> A e. CC ) |
|
| ldiv.b | |- ( ph -> B e. CC ) |
||
| ldiv.c | |- ( ph -> C e. CC ) |
||
| ldiv.bn0 | |- ( ph -> B =/= 0 ) |
||
| Assertion | ldiv | |- ( ph -> ( ( A x. B ) = C <-> A = ( C / B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldiv.a | |- ( ph -> A e. CC ) |
|
| 2 | ldiv.b | |- ( ph -> B e. CC ) |
|
| 3 | ldiv.c | |- ( ph -> C e. CC ) |
|
| 4 | ldiv.bn0 | |- ( ph -> B =/= 0 ) |
|
| 5 | oveq1 | |- ( ( A x. B ) = C -> ( ( A x. B ) / B ) = ( C / B ) ) |
|
| 6 | 1 2 4 | divcan4d | |- ( ph -> ( ( A x. B ) / B ) = A ) |
| 7 | 6 | eqeq1d | |- ( ph -> ( ( ( A x. B ) / B ) = ( C / B ) <-> A = ( C / B ) ) ) |
| 8 | 5 7 | imbitrid | |- ( ph -> ( ( A x. B ) = C -> A = ( C / B ) ) ) |
| 9 | oveq1 | |- ( A = ( C / B ) -> ( A x. B ) = ( ( C / B ) x. B ) ) |
|
| 10 | 3 2 4 | divcan1d | |- ( ph -> ( ( C / B ) x. B ) = C ) |
| 11 | 10 | eqeq2d | |- ( ph -> ( ( A x. B ) = ( ( C / B ) x. B ) <-> ( A x. B ) = C ) ) |
| 12 | 9 11 | imbitrid | |- ( ph -> ( A = ( C / B ) -> ( A x. B ) = C ) ) |
| 13 | 8 12 | impbid | |- ( ph -> ( ( A x. B ) = C <-> A = ( C / B ) ) ) |