This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma to assist theorems of || with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvds2lem.1 | |- ( ph -> ( I e. ZZ /\ J e. ZZ ) ) |
|
| dvds2lem.2 | |- ( ph -> ( K e. ZZ /\ L e. ZZ ) ) |
||
| dvds2lem.3 | |- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
||
| dvds2lem.4 | |- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> Z e. ZZ ) |
||
| dvds2lem.5 | |- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. I ) = J /\ ( y x. K ) = L ) -> ( Z x. M ) = N ) ) |
||
| Assertion | dvds2lem | |- ( ph -> ( ( I || J /\ K || L ) -> M || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds2lem.1 | |- ( ph -> ( I e. ZZ /\ J e. ZZ ) ) |
|
| 2 | dvds2lem.2 | |- ( ph -> ( K e. ZZ /\ L e. ZZ ) ) |
|
| 3 | dvds2lem.3 | |- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 4 | dvds2lem.4 | |- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> Z e. ZZ ) |
|
| 5 | dvds2lem.5 | |- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. I ) = J /\ ( y x. K ) = L ) -> ( Z x. M ) = N ) ) |
|
| 6 | divides | |- ( ( I e. ZZ /\ J e. ZZ ) -> ( I || J <-> E. x e. ZZ ( x x. I ) = J ) ) |
|
| 7 | divides | |- ( ( K e. ZZ /\ L e. ZZ ) -> ( K || L <-> E. y e. ZZ ( y x. K ) = L ) ) |
|
| 8 | 6 7 | bi2anan9 | |- ( ( ( I e. ZZ /\ J e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( ( I || J /\ K || L ) <-> ( E. x e. ZZ ( x x. I ) = J /\ E. y e. ZZ ( y x. K ) = L ) ) ) |
| 9 | 1 2 8 | syl2anc | |- ( ph -> ( ( I || J /\ K || L ) <-> ( E. x e. ZZ ( x x. I ) = J /\ E. y e. ZZ ( y x. K ) = L ) ) ) |
| 10 | 9 | biimpd | |- ( ph -> ( ( I || J /\ K || L ) -> ( E. x e. ZZ ( x x. I ) = J /\ E. y e. ZZ ( y x. K ) = L ) ) ) |
| 11 | reeanv | |- ( E. x e. ZZ E. y e. ZZ ( ( x x. I ) = J /\ ( y x. K ) = L ) <-> ( E. x e. ZZ ( x x. I ) = J /\ E. y e. ZZ ( y x. K ) = L ) ) |
|
| 12 | 10 11 | imbitrrdi | |- ( ph -> ( ( I || J /\ K || L ) -> E. x e. ZZ E. y e. ZZ ( ( x x. I ) = J /\ ( y x. K ) = L ) ) ) |
| 13 | oveq1 | |- ( z = Z -> ( z x. M ) = ( Z x. M ) ) |
|
| 14 | 13 | eqeq1d | |- ( z = Z -> ( ( z x. M ) = N <-> ( Z x. M ) = N ) ) |
| 15 | 14 | rspcev | |- ( ( Z e. ZZ /\ ( Z x. M ) = N ) -> E. z e. ZZ ( z x. M ) = N ) |
| 16 | 4 5 15 | syl6an | |- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. I ) = J /\ ( y x. K ) = L ) -> E. z e. ZZ ( z x. M ) = N ) ) |
| 17 | 16 | rexlimdvva | |- ( ph -> ( E. x e. ZZ E. y e. ZZ ( ( x x. I ) = J /\ ( y x. K ) = L ) -> E. z e. ZZ ( z x. M ) = N ) ) |
| 18 | 12 17 | syld | |- ( ph -> ( ( I || J /\ K || L ) -> E. z e. ZZ ( z x. M ) = N ) ) |
| 19 | divides | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. z e. ZZ ( z x. M ) = N ) ) |
|
| 20 | 3 19 | syl | |- ( ph -> ( M || N <-> E. z e. ZZ ( z x. M ) = N ) ) |
| 21 | 18 20 | sylibrd | |- ( ph -> ( ( I || J /\ K || L ) -> M || N ) ) |