This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsadd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( M + N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 2 | zaddcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
|
| 3 | simpr | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 4 | iddvds | |- ( M e. ZZ -> M || M ) |
|
| 5 | 4 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || M ) |
| 6 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 7 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 8 | pncan | |- ( ( M e. CC /\ N e. CC ) -> ( ( M + N ) - N ) = M ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M + N ) - N ) = M ) |
| 10 | 5 9 | breqtrrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( ( M + N ) - N ) ) |
| 11 | dvdssub2 | |- ( ( ( M e. ZZ /\ ( M + N ) e. ZZ /\ N e. ZZ ) /\ M || ( ( M + N ) - N ) ) -> ( M || ( M + N ) <-> M || N ) ) |
|
| 12 | 1 2 3 10 11 | syl31anc | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M + N ) <-> M || N ) ) |
| 13 | 12 | bicomd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( M + N ) ) ) |