This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set ofleft-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rlreg | |- RLReg = ( r e. _V |-> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crlreg | |- RLReg |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- r |
| 6 | 5 4 | cfv | |- ( Base ` r ) |
| 7 | vy | |- y |
|
| 8 | 3 | cv | |- x |
| 9 | cmulr | |- .r |
|
| 10 | 5 9 | cfv | |- ( .r ` r ) |
| 11 | 7 | cv | |- y |
| 12 | 8 11 10 | co | |- ( x ( .r ` r ) y ) |
| 13 | c0g | |- 0g |
|
| 14 | 5 13 | cfv | |- ( 0g ` r ) |
| 15 | 12 14 | wceq | |- ( x ( .r ` r ) y ) = ( 0g ` r ) |
| 16 | 11 14 | wceq | |- y = ( 0g ` r ) |
| 17 | 15 16 | wi | |- ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) |
| 18 | 17 7 6 | wral | |- A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) |
| 19 | 18 3 6 | crab | |- { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } |
| 20 | 1 2 19 | cmpt | |- ( r e. _V |-> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } ) |
| 21 | 0 20 | wceq | |- RLReg = ( r e. _V |-> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } ) |