This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmdprdpr.z | |- Z = ( Cntz ` G ) |
|
| dmdprdpr.0 | |- .0. = ( 0g ` G ) |
||
| dmdprdpr.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| dmdprdpr.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| dprdpr.s | |- .(+) = ( LSSum ` G ) |
||
| dprdpr.1 | |- ( ph -> S C_ ( Z ` T ) ) |
||
| dprdpr.2 | |- ( ph -> ( S i^i T ) = { .0. } ) |
||
| Assertion | dprdpr | |- ( ph -> ( G DProd { <. (/) , S >. , <. 1o , T >. } ) = ( S .(+) T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprdpr.z | |- Z = ( Cntz ` G ) |
|
| 2 | dmdprdpr.0 | |- .0. = ( 0g ` G ) |
|
| 3 | dmdprdpr.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 4 | dmdprdpr.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 5 | dprdpr.s | |- .(+) = ( LSSum ` G ) |
|
| 6 | dprdpr.1 | |- ( ph -> S C_ ( Z ` T ) ) |
|
| 7 | dprdpr.2 | |- ( ph -> ( S i^i T ) = { .0. } ) |
|
| 8 | xpscf | |- ( { <. (/) , S >. , <. 1o , T >. } : 2o --> ( SubGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) ) |
|
| 9 | 3 4 8 | sylanbrc | |- ( ph -> { <. (/) , S >. , <. 1o , T >. } : 2o --> ( SubGrp ` G ) ) |
| 10 | 1n0 | |- 1o =/= (/) |
|
| 11 | 10 | necomi | |- (/) =/= 1o |
| 12 | disjsn2 | |- ( (/) =/= 1o -> ( { (/) } i^i { 1o } ) = (/) ) |
|
| 13 | 11 12 | mp1i | |- ( ph -> ( { (/) } i^i { 1o } ) = (/) ) |
| 14 | df2o3 | |- 2o = { (/) , 1o } |
|
| 15 | df-pr | |- { (/) , 1o } = ( { (/) } u. { 1o } ) |
|
| 16 | 14 15 | eqtri | |- 2o = ( { (/) } u. { 1o } ) |
| 17 | 16 | a1i | |- ( ph -> 2o = ( { (/) } u. { 1o } ) ) |
| 18 | 1 2 3 4 | dmdprdpr | |- ( ph -> ( G dom DProd { <. (/) , S >. , <. 1o , T >. } <-> ( S C_ ( Z ` T ) /\ ( S i^i T ) = { .0. } ) ) ) |
| 19 | 6 7 18 | mpbir2and | |- ( ph -> G dom DProd { <. (/) , S >. , <. 1o , T >. } ) |
| 20 | 9 13 17 5 19 | dprdsplit | |- ( ph -> ( G DProd { <. (/) , S >. , <. 1o , T >. } ) = ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) .(+) ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) ) |
| 21 | 9 | ffnd | |- ( ph -> { <. (/) , S >. , <. 1o , T >. } Fn 2o ) |
| 22 | 0ex | |- (/) e. _V |
|
| 23 | 22 | prid1 | |- (/) e. { (/) , 1o } |
| 24 | 23 14 | eleqtrri | |- (/) e. 2o |
| 25 | fnressn | |- ( ( { <. (/) , S >. , <. 1o , T >. } Fn 2o /\ (/) e. 2o ) -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } ) |
|
| 26 | 21 24 25 | sylancl | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } ) |
| 27 | fvpr0o | |- ( S e. ( SubGrp ` G ) -> ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) = S ) |
|
| 28 | 3 27 | syl | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) = S ) |
| 29 | 28 | opeq2d | |- ( ph -> <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. = <. (/) , S >. ) |
| 30 | 29 | sneqd | |- ( ph -> { <. (/) , ( { <. (/) , S >. , <. 1o , T >. } ` (/) ) >. } = { <. (/) , S >. } ) |
| 31 | 26 30 | eqtrd | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) = { <. (/) , S >. } ) |
| 32 | 31 | oveq2d | |- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) = ( G DProd { <. (/) , S >. } ) ) |
| 33 | dprdsn | |- ( ( (/) e. _V /\ S e. ( SubGrp ` G ) ) -> ( G dom DProd { <. (/) , S >. } /\ ( G DProd { <. (/) , S >. } ) = S ) ) |
|
| 34 | 22 3 33 | sylancr | |- ( ph -> ( G dom DProd { <. (/) , S >. } /\ ( G DProd { <. (/) , S >. } ) = S ) ) |
| 35 | 34 | simprd | |- ( ph -> ( G DProd { <. (/) , S >. } ) = S ) |
| 36 | 32 35 | eqtrd | |- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) = S ) |
| 37 | 1oex | |- 1o e. _V |
|
| 38 | 37 | prid2 | |- 1o e. { (/) , 1o } |
| 39 | 38 14 | eleqtrri | |- 1o e. 2o |
| 40 | fnressn | |- ( ( { <. (/) , S >. , <. 1o , T >. } Fn 2o /\ 1o e. 2o ) -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } ) |
|
| 41 | 21 39 40 | sylancl | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } ) |
| 42 | fvpr1o | |- ( T e. ( SubGrp ` G ) -> ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) = T ) |
|
| 43 | 4 42 | syl | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) = T ) |
| 44 | 43 | opeq2d | |- ( ph -> <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. = <. 1o , T >. ) |
| 45 | 44 | sneqd | |- ( ph -> { <. 1o , ( { <. (/) , S >. , <. 1o , T >. } ` 1o ) >. } = { <. 1o , T >. } ) |
| 46 | 41 45 | eqtrd | |- ( ph -> ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) = { <. 1o , T >. } ) |
| 47 | 46 | oveq2d | |- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) = ( G DProd { <. 1o , T >. } ) ) |
| 48 | 1on | |- 1o e. On |
|
| 49 | dprdsn | |- ( ( 1o e. On /\ T e. ( SubGrp ` G ) ) -> ( G dom DProd { <. 1o , T >. } /\ ( G DProd { <. 1o , T >. } ) = T ) ) |
|
| 50 | 48 4 49 | sylancr | |- ( ph -> ( G dom DProd { <. 1o , T >. } /\ ( G DProd { <. 1o , T >. } ) = T ) ) |
| 51 | 50 | simprd | |- ( ph -> ( G DProd { <. 1o , T >. } ) = T ) |
| 52 | 47 51 | eqtrd | |- ( ph -> ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) = T ) |
| 53 | 36 52 | oveq12d | |- ( ph -> ( ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { (/) } ) ) .(+) ( G DProd ( { <. (/) , S >. , <. 1o , T >. } |` { 1o } ) ) ) = ( S .(+) T ) ) |
| 54 | 20 53 | eqtrd | |- ( ph -> ( G DProd { <. (/) , S >. , <. 1o , T >. } ) = ( S .(+) T ) ) |