This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dpjfval.1 | |- ( ph -> G dom DProd S ) |
|
| dpjfval.2 | |- ( ph -> dom S = I ) |
||
| dpjlem.3 | |- ( ph -> X e. I ) |
||
| Assertion | dpjlem | |- ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpjfval.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dpjfval.2 | |- ( ph -> dom S = I ) |
|
| 3 | dpjlem.3 | |- ( ph -> X e. I ) |
|
| 4 | 1 2 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 5 | 4 | ffnd | |- ( ph -> S Fn I ) |
| 6 | fnressn | |- ( ( S Fn I /\ X e. I ) -> ( S |` { X } ) = { <. X , ( S ` X ) >. } ) |
|
| 7 | 5 3 6 | syl2anc | |- ( ph -> ( S |` { X } ) = { <. X , ( S ` X ) >. } ) |
| 8 | 7 | oveq2d | |- ( ph -> ( G DProd ( S |` { X } ) ) = ( G DProd { <. X , ( S ` X ) >. } ) ) |
| 9 | 4 3 | ffvelcdmd | |- ( ph -> ( S ` X ) e. ( SubGrp ` G ) ) |
| 10 | dprdsn | |- ( ( X e. I /\ ( S ` X ) e. ( SubGrp ` G ) ) -> ( G dom DProd { <. X , ( S ` X ) >. } /\ ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) ) |
|
| 11 | 3 9 10 | syl2anc | |- ( ph -> ( G dom DProd { <. X , ( S ` X ) >. } /\ ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) ) |
| 12 | 11 | simprd | |- ( ph -> ( G DProd { <. X , ( S ` X ) >. } ) = ( S ` X ) ) |
| 13 | 8 12 | eqtrd | |- ( ph -> ( G DProd ( S |` { X } ) ) = ( S ` X ) ) |