This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brwdom | |- ( Y e. V -> ( X ~<_* Y <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( Y e. V -> Y e. _V ) |
|
| 2 | relwdom | |- Rel ~<_* |
|
| 3 | 2 | brrelex1i | |- ( X ~<_* Y -> X e. _V ) |
| 4 | 3 | a1i | |- ( Y e. _V -> ( X ~<_* Y -> X e. _V ) ) |
| 5 | 0ex | |- (/) e. _V |
|
| 6 | eleq1a | |- ( (/) e. _V -> ( X = (/) -> X e. _V ) ) |
|
| 7 | 5 6 | ax-mp | |- ( X = (/) -> X e. _V ) |
| 8 | forn | |- ( z : Y -onto-> X -> ran z = X ) |
|
| 9 | vex | |- z e. _V |
|
| 10 | 9 | rnex | |- ran z e. _V |
| 11 | 8 10 | eqeltrrdi | |- ( z : Y -onto-> X -> X e. _V ) |
| 12 | 11 | exlimiv | |- ( E. z z : Y -onto-> X -> X e. _V ) |
| 13 | 7 12 | jaoi | |- ( ( X = (/) \/ E. z z : Y -onto-> X ) -> X e. _V ) |
| 14 | 13 | a1i | |- ( Y e. _V -> ( ( X = (/) \/ E. z z : Y -onto-> X ) -> X e. _V ) ) |
| 15 | eqeq1 | |- ( x = X -> ( x = (/) <-> X = (/) ) ) |
|
| 16 | foeq3 | |- ( x = X -> ( z : y -onto-> x <-> z : y -onto-> X ) ) |
|
| 17 | 16 | exbidv | |- ( x = X -> ( E. z z : y -onto-> x <-> E. z z : y -onto-> X ) ) |
| 18 | 15 17 | orbi12d | |- ( x = X -> ( ( x = (/) \/ E. z z : y -onto-> x ) <-> ( X = (/) \/ E. z z : y -onto-> X ) ) ) |
| 19 | foeq2 | |- ( y = Y -> ( z : y -onto-> X <-> z : Y -onto-> X ) ) |
|
| 20 | 19 | exbidv | |- ( y = Y -> ( E. z z : y -onto-> X <-> E. z z : Y -onto-> X ) ) |
| 21 | 20 | orbi2d | |- ( y = Y -> ( ( X = (/) \/ E. z z : y -onto-> X ) <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
| 22 | df-wdom | |- ~<_* = { <. x , y >. | ( x = (/) \/ E. z z : y -onto-> x ) } |
|
| 23 | 18 21 22 | brabg | |- ( ( X e. _V /\ Y e. _V ) -> ( X ~<_* Y <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
| 24 | 23 | expcom | |- ( Y e. _V -> ( X e. _V -> ( X ~<_* Y <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) ) |
| 25 | 4 14 24 | pm5.21ndd | |- ( Y e. _V -> ( X ~<_* Y <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |
| 26 | 1 25 | syl | |- ( Y e. V -> ( X ~<_* Y <-> ( X = (/) \/ E. z z : Y -onto-> X ) ) ) |