This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtoclr.1 | |- Rel R |
|
| vtoclr.2 | |- ( ( x R y /\ y R z ) -> x R z ) |
||
| Assertion | vtoclr | |- ( ( A R B /\ B R C ) -> A R C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclr.1 | |- Rel R |
|
| 2 | vtoclr.2 | |- ( ( x R y /\ y R z ) -> x R z ) |
|
| 3 | 1 | brrelex12i | |- ( A R B -> ( A e. _V /\ B e. _V ) ) |
| 4 | 1 | brrelex2i | |- ( B R C -> C e. _V ) |
| 5 | breq1 | |- ( x = A -> ( x R y <-> A R y ) ) |
|
| 6 | 5 | anbi1d | |- ( x = A -> ( ( x R y /\ y R C ) <-> ( A R y /\ y R C ) ) ) |
| 7 | breq1 | |- ( x = A -> ( x R C <-> A R C ) ) |
|
| 8 | 6 7 | imbi12d | |- ( x = A -> ( ( ( x R y /\ y R C ) -> x R C ) <-> ( ( A R y /\ y R C ) -> A R C ) ) ) |
| 9 | 8 | imbi2d | |- ( x = A -> ( ( C e. _V -> ( ( x R y /\ y R C ) -> x R C ) ) <-> ( C e. _V -> ( ( A R y /\ y R C ) -> A R C ) ) ) ) |
| 10 | breq2 | |- ( y = B -> ( A R y <-> A R B ) ) |
|
| 11 | breq1 | |- ( y = B -> ( y R C <-> B R C ) ) |
|
| 12 | 10 11 | anbi12d | |- ( y = B -> ( ( A R y /\ y R C ) <-> ( A R B /\ B R C ) ) ) |
| 13 | 12 | imbi1d | |- ( y = B -> ( ( ( A R y /\ y R C ) -> A R C ) <-> ( ( A R B /\ B R C ) -> A R C ) ) ) |
| 14 | 13 | imbi2d | |- ( y = B -> ( ( C e. _V -> ( ( A R y /\ y R C ) -> A R C ) ) <-> ( C e. _V -> ( ( A R B /\ B R C ) -> A R C ) ) ) ) |
| 15 | breq2 | |- ( z = C -> ( y R z <-> y R C ) ) |
|
| 16 | 15 | anbi2d | |- ( z = C -> ( ( x R y /\ y R z ) <-> ( x R y /\ y R C ) ) ) |
| 17 | breq2 | |- ( z = C -> ( x R z <-> x R C ) ) |
|
| 18 | 16 17 | imbi12d | |- ( z = C -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( x R y /\ y R C ) -> x R C ) ) ) |
| 19 | 18 2 | vtoclg | |- ( C e. _V -> ( ( x R y /\ y R C ) -> x R C ) ) |
| 20 | 9 14 19 | vtocl2g | |- ( ( A e. _V /\ B e. _V ) -> ( C e. _V -> ( ( A R B /\ B R C ) -> A R C ) ) ) |
| 21 | 3 4 20 | syl2im | |- ( A R B -> ( B R C -> ( ( A R B /\ B R C ) -> A R C ) ) ) |
| 22 | 21 | imp | |- ( ( A R B /\ B R C ) -> ( ( A R B /\ B R C ) -> A R C ) ) |
| 23 | 22 | pm2.43i | |- ( ( A R B /\ B R C ) -> A R C ) |