This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 22-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmxrn | |- dom ( R |X. S ) = ( dom R i^i dom S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv | |- ( E. x E. y ( z R x /\ z S y ) <-> ( E. x z R x /\ E. y z S y ) ) |
|
| 2 | 1 | abbii | |- { z | E. x E. y ( z R x /\ z S y ) } = { z | ( E. x z R x /\ E. y z S y ) } |
| 3 | dfxrn2 | |- ( R |X. S ) = `' { <. <. x , y >. , z >. | ( z R x /\ z S y ) } |
|
| 4 | 3 | dmeqi | |- dom ( R |X. S ) = dom `' { <. <. x , y >. , z >. | ( z R x /\ z S y ) } |
| 5 | df-rn | |- ran { <. <. x , y >. , z >. | ( z R x /\ z S y ) } = dom `' { <. <. x , y >. , z >. | ( z R x /\ z S y ) } |
|
| 6 | rnoprab | |- ran { <. <. x , y >. , z >. | ( z R x /\ z S y ) } = { z | E. x E. y ( z R x /\ z S y ) } |
|
| 7 | 4 5 6 | 3eqtr2i | |- dom ( R |X. S ) = { z | E. x E. y ( z R x /\ z S y ) } |
| 8 | inab | |- ( { z | E. x z R x } i^i { z | E. y z S y } ) = { z | ( E. x z R x /\ E. y z S y ) } |
|
| 9 | 2 7 8 | 3eqtr4i | |- dom ( R |X. S ) = ( { z | E. x z R x } i^i { z | E. y z S y } ) |
| 10 | df-dm | |- dom R = { z | E. x z R x } |
|
| 11 | df-dm | |- dom S = { z | E. y z S y } |
|
| 12 | 10 11 | ineq12i | |- ( dom R i^i dom S ) = ( { z | E. x z R x } i^i { z | E. y z S y } ) |
| 13 | 9 12 | eqtr4i | |- dom ( R |X. S ) = ( dom R i^i dom S ) |