This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 22-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmxrn | ⊢ dom ( 𝑅 ⋉ 𝑆 ) = ( dom 𝑅 ∩ dom 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) ↔ ( ∃ 𝑥 𝑧 𝑅 𝑥 ∧ ∃ 𝑦 𝑧 𝑆 𝑦 ) ) | |
| 2 | 1 | abbii | ⊢ { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) } = { 𝑧 ∣ ( ∃ 𝑥 𝑧 𝑅 𝑥 ∧ ∃ 𝑦 𝑧 𝑆 𝑦 ) } |
| 3 | dfxrn2 | ⊢ ( 𝑅 ⋉ 𝑆 ) = ◡ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) } | |
| 4 | 3 | dmeqi | ⊢ dom ( 𝑅 ⋉ 𝑆 ) = dom ◡ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) } |
| 5 | df-rn | ⊢ ran { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) } = dom ◡ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) } | |
| 6 | rnoprab | ⊢ ran { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) } | |
| 7 | 4 5 6 | 3eqtr2i | ⊢ dom ( 𝑅 ⋉ 𝑆 ) = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 𝑅 𝑥 ∧ 𝑧 𝑆 𝑦 ) } |
| 8 | inab | ⊢ ( { 𝑧 ∣ ∃ 𝑥 𝑧 𝑅 𝑥 } ∩ { 𝑧 ∣ ∃ 𝑦 𝑧 𝑆 𝑦 } ) = { 𝑧 ∣ ( ∃ 𝑥 𝑧 𝑅 𝑥 ∧ ∃ 𝑦 𝑧 𝑆 𝑦 ) } | |
| 9 | 2 7 8 | 3eqtr4i | ⊢ dom ( 𝑅 ⋉ 𝑆 ) = ( { 𝑧 ∣ ∃ 𝑥 𝑧 𝑅 𝑥 } ∩ { 𝑧 ∣ ∃ 𝑦 𝑧 𝑆 𝑦 } ) |
| 10 | df-dm | ⊢ dom 𝑅 = { 𝑧 ∣ ∃ 𝑥 𝑧 𝑅 𝑥 } | |
| 11 | df-dm | ⊢ dom 𝑆 = { 𝑧 ∣ ∃ 𝑦 𝑧 𝑆 𝑦 } | |
| 12 | 10 11 | ineq12i | ⊢ ( dom 𝑅 ∩ dom 𝑆 ) = ( { 𝑧 ∣ ∃ 𝑥 𝑧 𝑅 𝑥 } ∩ { 𝑧 ∣ ∃ 𝑦 𝑧 𝑆 𝑦 } ) |
| 13 | 9 12 | eqtr4i | ⊢ dom ( 𝑅 ⋉ 𝑆 ) = ( dom 𝑅 ∩ dom 𝑆 ) |