This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004) (Revised by David Abernethy, 19-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnoprab | |- ran { <. <. x , y >. , z >. | ph } = { z | E. x E. y ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 2 | 1 | rneqi | |- ran { <. <. x , y >. , z >. | ph } = ran { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
| 3 | rnopab | |- ran { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } = { z | E. w E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 4 | exrot3 | |- ( E. w E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x E. y E. w ( w = <. x , y >. /\ ph ) ) |
|
| 5 | opex | |- <. x , y >. e. _V |
|
| 6 | 5 | isseti | |- E. w w = <. x , y >. |
| 7 | 19.41v | |- ( E. w ( w = <. x , y >. /\ ph ) <-> ( E. w w = <. x , y >. /\ ph ) ) |
|
| 8 | 6 7 | mpbiran | |- ( E. w ( w = <. x , y >. /\ ph ) <-> ph ) |
| 9 | 8 | 2exbii | |- ( E. x E. y E. w ( w = <. x , y >. /\ ph ) <-> E. x E. y ph ) |
| 10 | 4 9 | bitri | |- ( E. w E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x E. y ph ) |
| 11 | 10 | abbii | |- { z | E. w E. x E. y ( w = <. x , y >. /\ ph ) } = { z | E. x E. y ph } |
| 12 | 2 3 11 | 3eqtri | |- ran { <. <. x , y >. , z >. | ph } = { z | E. x E. y ph } |