This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rninxp | |- ( ran ( C i^i ( A X. B ) ) = B <-> A. y e. B E. x e. A x C y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 | |- ( B C_ ran ( C |` A ) <-> A. y e. B y e. ran ( C |` A ) ) |
|
| 2 | ssrnres | |- ( B C_ ran ( C |` A ) <-> ran ( C i^i ( A X. B ) ) = B ) |
|
| 3 | df-ima | |- ( C " A ) = ran ( C |` A ) |
|
| 4 | 3 | eleq2i | |- ( y e. ( C " A ) <-> y e. ran ( C |` A ) ) |
| 5 | vex | |- y e. _V |
|
| 6 | 5 | elima | |- ( y e. ( C " A ) <-> E. x e. A x C y ) |
| 7 | 4 6 | bitr3i | |- ( y e. ran ( C |` A ) <-> E. x e. A x C y ) |
| 8 | 7 | ralbii | |- ( A. y e. B y e. ran ( C |` A ) <-> A. y e. B E. x e. A x C y ) |
| 9 | 1 2 8 | 3bitr3i | |- ( ran ( C i^i ( A X. B ) ) = B <-> A. y e. B E. x e. A x C y ) |