This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djurcl | |- ( C e. B -> ( inr ` C ) e. ( A |_| B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( C e. B -> C e. _V ) |
|
| 2 | 1oex | |- 1o e. _V |
|
| 3 | 2 | snid | |- 1o e. { 1o } |
| 4 | opelxpi | |- ( ( 1o e. { 1o } /\ C e. B ) -> <. 1o , C >. e. ( { 1o } X. B ) ) |
|
| 5 | 3 4 | mpan | |- ( C e. B -> <. 1o , C >. e. ( { 1o } X. B ) ) |
| 6 | opeq2 | |- ( x = C -> <. 1o , x >. = <. 1o , C >. ) |
|
| 7 | df-inr | |- inr = ( x e. _V |-> <. 1o , x >. ) |
|
| 8 | 6 7 | fvmptg | |- ( ( C e. _V /\ <. 1o , C >. e. ( { 1o } X. B ) ) -> ( inr ` C ) = <. 1o , C >. ) |
| 9 | 1 5 8 | syl2anc | |- ( C e. B -> ( inr ` C ) = <. 1o , C >. ) |
| 10 | elun2 | |- ( <. 1o , C >. e. ( { 1o } X. B ) -> <. 1o , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
|
| 11 | 5 10 | syl | |- ( C e. B -> <. 1o , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 12 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 13 | 11 12 | eleqtrrdi | |- ( C e. B -> <. 1o , C >. e. ( A |_| B ) ) |
| 14 | 9 13 | eqeltrd | |- ( C e. B -> ( inr ` C ) e. ( A |_| B ) ) |