This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the denominators in the product of two ratios. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmul13 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( B / C ) x. ( A / D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A x. B ) = ( B x. A ) ) |
| 3 | 2 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. B ) / ( C x. D ) ) = ( ( B x. A ) / ( C x. D ) ) ) |
| 4 | divmuldiv | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
|
| 5 | divmuldiv | |- ( ( ( B e. CC /\ A e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / C ) x. ( A / D ) ) = ( ( B x. A ) / ( C x. D ) ) ) |
|
| 6 | 5 | ancom1s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( B / C ) x. ( A / D ) ) = ( ( B x. A ) / ( C x. D ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( B / C ) x. ( A / D ) ) ) |