This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the denominators in the product of two ratios. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmul13 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) · ( 𝐵 / 𝐷 ) ) = ( ( 𝐵 / 𝐶 ) · ( 𝐴 / 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 3 | 2 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 · 𝐵 ) / ( 𝐶 · 𝐷 ) ) = ( ( 𝐵 · 𝐴 ) / ( 𝐶 · 𝐷 ) ) ) |
| 4 | divmuldiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) · ( 𝐵 / 𝐷 ) ) = ( ( 𝐴 · 𝐵 ) / ( 𝐶 · 𝐷 ) ) ) | |
| 5 | divmuldiv | ⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐵 / 𝐶 ) · ( 𝐴 / 𝐷 ) ) = ( ( 𝐵 · 𝐴 ) / ( 𝐶 · 𝐷 ) ) ) | |
| 6 | 5 | ancom1s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐵 / 𝐶 ) · ( 𝐴 / 𝐷 ) ) = ( ( 𝐵 · 𝐴 ) / ( 𝐶 · 𝐷 ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐶 ) · ( 𝐵 / 𝐷 ) ) = ( ( 𝐵 / 𝐶 ) · ( 𝐴 / 𝐷 ) ) ) |