This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative/associative law for division. (Contributed by NM, 22-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div13 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. C ) = ( ( C / B ) x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. CC /\ C e. CC ) -> ( ( A x. C ) / B ) = ( ( C x. A ) / B ) ) |
| 3 | 2 | 3adant2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A x. C ) / B ) = ( ( C x. A ) / B ) ) |
| 4 | div23 | |- ( ( A e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A x. C ) / B ) = ( ( A / B ) x. C ) ) |
|
| 5 | 4 | 3com23 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A x. C ) / B ) = ( ( A / B ) x. C ) ) |
| 6 | div23 | |- ( ( C e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( C x. A ) / B ) = ( ( C / B ) x. A ) ) |
|
| 7 | 6 | 3coml | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( C x. A ) / B ) = ( ( C / B ) x. A ) ) |
| 8 | 3 5 7 | 3eqtr3d | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. C ) = ( ( C / B ) x. A ) ) |