This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative/associative law for division. (Contributed by NM, 22-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div13 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) · 𝐶 ) = ( ( 𝐶 / 𝐵 ) · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) = ( 𝐶 · 𝐴 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) / 𝐵 ) = ( ( 𝐶 · 𝐴 ) / 𝐵 ) ) |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) / 𝐵 ) = ( ( 𝐶 · 𝐴 ) / 𝐵 ) ) |
| 4 | div23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) / 𝐵 ) = ( ( 𝐴 / 𝐵 ) · 𝐶 ) ) | |
| 5 | 4 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐶 ) / 𝐵 ) = ( ( 𝐴 / 𝐵 ) · 𝐶 ) ) |
| 6 | div23 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐶 · 𝐴 ) / 𝐵 ) = ( ( 𝐶 / 𝐵 ) · 𝐴 ) ) | |
| 7 | 6 | 3coml | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 · 𝐴 ) / 𝐵 ) = ( ( 𝐶 / 𝐵 ) · 𝐴 ) ) |
| 8 | 3 5 7 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) · 𝐶 ) = ( ( 𝐶 / 𝐵 ) · 𝐴 ) ) |