This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of div11 as of 9-Jul-2025. (Contributed by NM, 20-Apr-2006) (Proof shortened by Mario Carneiro, 27-May-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div11OLD | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) |
|
| 2 | simp3l | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
| 3 | simp3r | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
|
| 4 | divcl | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
| 6 | simp2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 7 | divcl | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) e. CC ) |
|
| 8 | 6 2 3 7 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) e. CC ) |
| 9 | 5 8 2 3 | mulcand | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. ( A / C ) ) = ( C x. ( B / C ) ) <-> ( A / C ) = ( B / C ) ) ) |
| 10 | divcan2 | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( C x. ( A / C ) ) = A ) |
|
| 11 | 1 2 3 10 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. ( A / C ) ) = A ) |
| 12 | divcan2 | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( C x. ( B / C ) ) = B ) |
|
| 13 | 6 2 3 12 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. ( B / C ) ) = B ) |
| 14 | 11 13 | eqeq12d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. ( A / C ) ) = ( C x. ( B / C ) ) <-> A = B ) ) |
| 15 | 9 14 | bitr3d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) = ( B / C ) <-> A = B ) ) |