This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is non-empty, the morphism part of a diagonal functor is injective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2f1.l | |- L = ( C DiagFunc D ) |
|
| diag2f1.a | |- A = ( Base ` C ) |
||
| diag2f1.b | |- B = ( Base ` D ) |
||
| diag2f1.h | |- H = ( Hom ` C ) |
||
| diag2f1.c | |- ( ph -> C e. Cat ) |
||
| diag2f1.d | |- ( ph -> D e. Cat ) |
||
| diag2f1.x | |- ( ph -> X e. A ) |
||
| diag2f1.y | |- ( ph -> Y e. A ) |
||
| diag2f1.0 | |- ( ph -> B =/= (/) ) |
||
| diag2f1.n | |- N = ( D Nat C ) |
||
| Assertion | diag2f1 | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2f1.l | |- L = ( C DiagFunc D ) |
|
| 2 | diag2f1.a | |- A = ( Base ` C ) |
|
| 3 | diag2f1.b | |- B = ( Base ` D ) |
|
| 4 | diag2f1.h | |- H = ( Hom ` C ) |
|
| 5 | diag2f1.c | |- ( ph -> C e. Cat ) |
|
| 6 | diag2f1.d | |- ( ph -> D e. Cat ) |
|
| 7 | diag2f1.x | |- ( ph -> X e. A ) |
|
| 8 | diag2f1.y | |- ( ph -> Y e. A ) |
|
| 9 | diag2f1.0 | |- ( ph -> B =/= (/) ) |
|
| 10 | diag2f1.n | |- N = ( D Nat C ) |
|
| 11 | eqid | |- ( D FuncCat C ) = ( D FuncCat C ) |
|
| 12 | 11 10 | fuchom | |- N = ( Hom ` ( D FuncCat C ) ) |
| 13 | 1 5 6 11 | diagcl | |- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
| 14 | 13 | func1st2nd | |- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 15 | 2 4 12 14 7 8 | funcf2 | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |
| 16 | 5 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> C e. Cat ) |
| 17 | 6 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> D e. Cat ) |
| 18 | 7 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> X e. A ) |
| 19 | 8 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> Y e. A ) |
| 20 | 9 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> B =/= (/) ) |
| 21 | simprl | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> f e. ( X H Y ) ) |
|
| 22 | simprr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> g e. ( X H Y ) ) |
|
| 23 | 1 2 3 4 16 17 18 19 20 21 22 | diag2f1lem | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> ( ( ( X ( 2nd ` L ) Y ) ` f ) = ( ( X ( 2nd ` L ) Y ) ` g ) -> f = g ) ) |
| 24 | 23 | ralrimivva | |- ( ph -> A. f e. ( X H Y ) A. g e. ( X H Y ) ( ( ( X ( 2nd ` L ) Y ) ` f ) = ( ( X ( 2nd ` L ) Y ) ` g ) -> f = g ) ) |
| 25 | dff13 | |- ( ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) <-> ( ( X ( 2nd ` L ) Y ) : ( X H Y ) --> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) /\ A. f e. ( X H Y ) A. g e. ( X H Y ) ( ( ( X ( 2nd ` L ) Y ) ` f ) = ( ( X ( 2nd ` L ) Y ) ` g ) -> f = g ) ) ) |
|
| 26 | 15 24 25 | sylanbrc | |- ( ph -> ( X ( 2nd ` L ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` L ) ` X ) N ( ( 1st ` L ) ` Y ) ) ) |