This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elvvv | |- ( A e. ( ( _V X. _V ) X. _V ) <-> E. x E. y E. z A = <. <. x , y >. , z >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | |- ( A e. ( ( _V X. _V ) X. _V ) <-> E. w E. z ( A = <. w , z >. /\ ( w e. ( _V X. _V ) /\ z e. _V ) ) ) |
|
| 2 | ancom | |- ( ( w = <. x , y >. /\ A = <. w , z >. ) <-> ( A = <. w , z >. /\ w = <. x , y >. ) ) |
|
| 3 | 2 | 2exbii | |- ( E. x E. y ( w = <. x , y >. /\ A = <. w , z >. ) <-> E. x E. y ( A = <. w , z >. /\ w = <. x , y >. ) ) |
| 4 | 19.42vv | |- ( E. x E. y ( A = <. w , z >. /\ w = <. x , y >. ) <-> ( A = <. w , z >. /\ E. x E. y w = <. x , y >. ) ) |
|
| 5 | elvv | |- ( w e. ( _V X. _V ) <-> E. x E. y w = <. x , y >. ) |
|
| 6 | 5 | anbi2i | |- ( ( A = <. w , z >. /\ w e. ( _V X. _V ) ) <-> ( A = <. w , z >. /\ E. x E. y w = <. x , y >. ) ) |
| 7 | vex | |- z e. _V |
|
| 8 | 7 | biantru | |- ( ( A = <. w , z >. /\ w e. ( _V X. _V ) ) <-> ( ( A = <. w , z >. /\ w e. ( _V X. _V ) ) /\ z e. _V ) ) |
| 9 | 4 6 8 | 3bitr2i | |- ( E. x E. y ( A = <. w , z >. /\ w = <. x , y >. ) <-> ( ( A = <. w , z >. /\ w e. ( _V X. _V ) ) /\ z e. _V ) ) |
| 10 | anass | |- ( ( ( A = <. w , z >. /\ w e. ( _V X. _V ) ) /\ z e. _V ) <-> ( A = <. w , z >. /\ ( w e. ( _V X. _V ) /\ z e. _V ) ) ) |
|
| 11 | 3 9 10 | 3bitrri | |- ( ( A = <. w , z >. /\ ( w e. ( _V X. _V ) /\ z e. _V ) ) <-> E. x E. y ( w = <. x , y >. /\ A = <. w , z >. ) ) |
| 12 | 11 | 2exbii | |- ( E. w E. z ( A = <. w , z >. /\ ( w e. ( _V X. _V ) /\ z e. _V ) ) <-> E. w E. z E. x E. y ( w = <. x , y >. /\ A = <. w , z >. ) ) |
| 13 | exrot4 | |- ( E. x E. y E. w E. z ( w = <. x , y >. /\ A = <. w , z >. ) <-> E. w E. z E. x E. y ( w = <. x , y >. /\ A = <. w , z >. ) ) |
|
| 14 | excom | |- ( E. w E. z ( w = <. x , y >. /\ A = <. w , z >. ) <-> E. z E. w ( w = <. x , y >. /\ A = <. w , z >. ) ) |
|
| 15 | opex | |- <. x , y >. e. _V |
|
| 16 | opeq1 | |- ( w = <. x , y >. -> <. w , z >. = <. <. x , y >. , z >. ) |
|
| 17 | 16 | eqeq2d | |- ( w = <. x , y >. -> ( A = <. w , z >. <-> A = <. <. x , y >. , z >. ) ) |
| 18 | 15 17 | ceqsexv | |- ( E. w ( w = <. x , y >. /\ A = <. w , z >. ) <-> A = <. <. x , y >. , z >. ) |
| 19 | 18 | exbii | |- ( E. z E. w ( w = <. x , y >. /\ A = <. w , z >. ) <-> E. z A = <. <. x , y >. , z >. ) |
| 20 | 14 19 | bitri | |- ( E. w E. z ( w = <. x , y >. /\ A = <. w , z >. ) <-> E. z A = <. <. x , y >. , z >. ) |
| 21 | 20 | 2exbii | |- ( E. x E. y E. w E. z ( w = <. x , y >. /\ A = <. w , z >. ) <-> E. x E. y E. z A = <. <. x , y >. , z >. ) |
| 22 | 12 13 21 | 3bitr2i | |- ( E. w E. z ( A = <. w , z >. /\ ( w e. ( _V X. _V ) /\ z e. _V ) ) <-> E. x E. y E. z A = <. <. x , y >. , z >. ) |
| 23 | 1 22 | bitri | |- ( A e. ( ( _V X. _V ) X. _V ) <-> E. x E. y E. z A = <. <. x , y >. , z >. ) |