This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation precomposed with the projection on the second component. (Contributed by BJ, 27-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opco1.exa | |- ( ph -> A e. V ) |
|
| opco1.exb | |- ( ph -> B e. W ) |
||
| Assertion | opco2 | |- ( ph -> ( A ( F o. 2nd ) B ) = ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opco1.exa | |- ( ph -> A e. V ) |
|
| 2 | opco1.exb | |- ( ph -> B e. W ) |
|
| 3 | df-ov | |- ( A ( F o. 2nd ) B ) = ( ( F o. 2nd ) ` <. A , B >. ) |
|
| 4 | 3 | a1i | |- ( ph -> ( A ( F o. 2nd ) B ) = ( ( F o. 2nd ) ` <. A , B >. ) ) |
| 5 | fo2nd | |- 2nd : _V -onto-> _V |
|
| 6 | fof | |- ( 2nd : _V -onto-> _V -> 2nd : _V --> _V ) |
|
| 7 | 5 6 | mp1i | |- ( ph -> 2nd : _V --> _V ) |
| 8 | opex | |- <. A , B >. e. _V |
|
| 9 | 8 | a1i | |- ( ph -> <. A , B >. e. _V ) |
| 10 | 7 9 | fvco3d | |- ( ph -> ( ( F o. 2nd ) ` <. A , B >. ) = ( F ` ( 2nd ` <. A , B >. ) ) ) |
| 11 | op2ndg | |- ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) |
|
| 12 | 1 2 11 | syl2anc | |- ( ph -> ( 2nd ` <. A , B >. ) = B ) |
| 13 | 12 | fveq2d | |- ( ph -> ( F ` ( 2nd ` <. A , B >. ) ) = ( F ` B ) ) |
| 14 | 4 10 13 | 3eqtrd | |- ( ph -> ( A ( F o. 2nd ) B ) = ( F ` B ) ) |