This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfoprab3.1 | |- ( w = <. x , y >. -> ( ph <-> ps ) ) |
|
| Assertion | dfoprab3 | |- { <. w , z >. | ( w e. ( _V X. _V ) /\ ph ) } = { <. <. x , y >. , z >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab3.1 | |- ( w = <. x , y >. -> ( ph <-> ps ) ) |
|
| 2 | dfoprab3s | |- { <. <. x , y >. , z >. | ps } = { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ps ) } |
|
| 3 | fvex | |- ( 1st ` w ) e. _V |
|
| 4 | fvex | |- ( 2nd ` w ) e. _V |
|
| 5 | eqcom | |- ( x = ( 1st ` w ) <-> ( 1st ` w ) = x ) |
|
| 6 | eqcom | |- ( y = ( 2nd ` w ) <-> ( 2nd ` w ) = y ) |
|
| 7 | 5 6 | anbi12i | |- ( ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) <-> ( ( 1st ` w ) = x /\ ( 2nd ` w ) = y ) ) |
| 8 | eqopi | |- ( ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) = x /\ ( 2nd ` w ) = y ) ) -> w = <. x , y >. ) |
|
| 9 | 7 8 | sylan2b | |- ( ( w e. ( _V X. _V ) /\ ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> w = <. x , y >. ) |
| 10 | 9 1 | syl | |- ( ( w e. ( _V X. _V ) /\ ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> ( ph <-> ps ) ) |
| 11 | 10 | bicomd | |- ( ( w e. ( _V X. _V ) /\ ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> ( ps <-> ph ) ) |
| 12 | 11 | ex | |- ( w e. ( _V X. _V ) -> ( ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) -> ( ps <-> ph ) ) ) |
| 13 | 3 4 12 | sbc2iedv | |- ( w e. ( _V X. _V ) -> ( [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ps <-> ph ) ) |
| 14 | 13 | pm5.32i | |- ( ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ps ) <-> ( w e. ( _V X. _V ) /\ ph ) ) |
| 15 | 14 | opabbii | |- { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ps ) } = { <. w , z >. | ( w e. ( _V X. _V ) /\ ph ) } |
| 16 | 2 15 | eqtr2i | |- { <. w , z >. | ( w e. ( _V X. _V ) /\ ph ) } = { <. <. x , y >. , z >. | ps } |