This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An object A is said to be an initial object provided that for each object B there is exactly one morphism from A to B. Definition 7.1 in Adamek p. 101, or definition in Lang p. 57 (called "a universally repelling object" there). See dfinito2 and dfinito3 for alternate definitions depending on df-termo . See dfinito4 for an alternate definition using the universal property. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-inito | |- InitO = ( c e. Cat |-> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cinito | |- InitO |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | va | |- a |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- c |
| 6 | 5 4 | cfv | |- ( Base ` c ) |
| 7 | vb | |- b |
|
| 8 | vh | |- h |
|
| 9 | 8 | cv | |- h |
| 10 | 3 | cv | |- a |
| 11 | chom | |- Hom |
|
| 12 | 5 11 | cfv | |- ( Hom ` c ) |
| 13 | 7 | cv | |- b |
| 14 | 10 13 12 | co | |- ( a ( Hom ` c ) b ) |
| 15 | 9 14 | wcel | |- h e. ( a ( Hom ` c ) b ) |
| 16 | 15 8 | weu | |- E! h h e. ( a ( Hom ` c ) b ) |
| 17 | 16 7 6 | wral | |- A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) |
| 18 | 17 3 6 | crab | |- { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) } |
| 19 | 1 2 18 | cmpt | |- ( c e. Cat |-> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) } ) |
| 20 | 0 19 | wceq | |- InitO = ( c e. Cat |-> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) } ) |