This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of the conditional operator df-if as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfif6 | |- if ( ph , A , B ) = ( { x e. A | ph } u. { x e. B | -. ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 2 | 1 | anbi1d | |- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. A /\ ph ) ) ) |
| 3 | eleq1w | |- ( x = y -> ( x e. B <-> y e. B ) ) |
|
| 4 | 3 | anbi1d | |- ( x = y -> ( ( x e. B /\ -. ph ) <-> ( y e. B /\ -. ph ) ) ) |
| 5 | 2 4 | unabw | |- ( { x | ( x e. A /\ ph ) } u. { x | ( x e. B /\ -. ph ) } ) = { y | ( ( y e. A /\ ph ) \/ ( y e. B /\ -. ph ) ) } |
| 6 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 7 | df-rab | |- { x e. B | -. ph } = { x | ( x e. B /\ -. ph ) } |
|
| 8 | 6 7 | uneq12i | |- ( { x e. A | ph } u. { x e. B | -. ph } ) = ( { x | ( x e. A /\ ph ) } u. { x | ( x e. B /\ -. ph ) } ) |
| 9 | df-if | |- if ( ph , A , B ) = { y | ( ( y e. A /\ ph ) \/ ( y e. B /\ -. ph ) ) } |
|
| 10 | 5 8 9 | 3eqtr4ri | |- if ( ph , A , B ) = ( { x e. A | ph } u. { x e. B | -. ph } ) |