This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class abstraction defined by a negation. Version of notab using implicit substitution, which does not require ax-10 , ax-12 . (Contributed by GG, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | notabw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | notabw | |- { x | -. ph } = ( _V \ { y | ps } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notabw.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | biantrur | |- ( -. x e. { y | ps } <-> ( x e. _V /\ -. x e. { y | ps } ) ) |
| 4 | df-clab | |- ( x e. { y | ps } <-> [ x / y ] ps ) |
|
| 5 | 1 | bicomd | |- ( x = y -> ( ps <-> ph ) ) |
| 6 | 5 | equcoms | |- ( y = x -> ( ps <-> ph ) ) |
| 7 | 6 | sbievw | |- ( [ x / y ] ps <-> ph ) |
| 8 | 4 7 | bitri | |- ( x e. { y | ps } <-> ph ) |
| 9 | 3 8 | xchnxbi | |- ( -. ph <-> ( x e. _V /\ -. x e. { y | ps } ) ) |
| 10 | 9 | abbii | |- { x | -. ph } = { x | ( x e. _V /\ -. x e. { y | ps } ) } |
| 11 | df-dif | |- ( _V \ { y | ps } ) = { x | ( x e. _V /\ -. x e. { y | ps } ) } |
|
| 12 | 10 11 | eqtr4i | |- { x | -. ph } = ( _V \ { y | ps } ) |